get_app_list.RdGet a list of applications in the Steam store, either a complete list or the top games by concurrent players, all-time players, or top releases.
get_app_list()
get_games_by_ccu(
language = "english",
elanguage = NULL,
country_code = "US",
steam_realm = 1L,
include = NULL,
apply_user_filters = FALSE
)
get_most_played_games()
get_top_releases()
get_apps_in_genre(genre, language = "english", country_code = "US")
get_apps_in_category(category, language = "english", country_code = "US")get_app_listA dataframe containing the appID and name.
get_games_by_ccuA dataframe containing the appID, the rank by CCU and the total number and all-time record of concurrent players.
get_most_played_gameA dataframe containing the appID, the rank by total all-time players and players last week as well as the all-time record of concurrent players.
A dataframe with three rows containing the top releases of the last three months. Each row contains the start of the month, the url path for the top releases and a vector top release appIDs. The URL path can be appended to the following URL:
https://store.steampowered.com/charts/topnewreleases/
steamspy for a similar approach by the SteamSpy API
get_app_list()
#> # A tibble: 225,267 × 2
#> appid name
#> <int> <chr>
#> 1 5 Dedicated Server
#> 2 7 Steam Client
#> 3 8 winui2
#> 4 10 Counter-Strike
#> 5 20 Team Fortress Classic
#> 6 30 Day of Defeat
#> 7 40 Deathmatch Classic
#> 8 50 Half-Life: Opposing Force
#> 9 60 Ricochet
#> 10 70 Half-Life
#> # ℹ 225,257 more rows
# get most played games
get_games_by_ccu()
#> # A tibble: 100 × 4
#> rank appid concurrent_in_game peak_in_game
#> <int> <int> <int> <int>
#> 1 1 730 585699 1527145
#> 2 2 2767030 374868 441152
#> 3 3 2694490 350770 464713
#> 4 4 570 280866 594495
#> 5 5 1938090 99866 116690
#> 6 6 2923300 99526 105848
#> 7 7 578080 92149 770160
#> 8 8 252490 83276 133112
#> 9 9 271590 69321 169678
#> 10 10 2507950 65776 91698
#> # ℹ 90 more rows
# get most popular games of all time
get_most_played_games()
#> # A tibble: 100 × 4
#> rank appid last_week_rank peak_in_game
#> <int> <int> <int> <int>
#> 1 1 730 1 1460550
#> 2 2 2767030 -1 460883
#> 3 3 570 2 600334
#> 4 4 578080 3 747601
#> 5 5 431960 4 121241
#> 6 6 2694490 -1 480368
#> 7 7 1203220 5 293356
#> 8 8 271590 7 178332
#> 9 9 1938090 6 122668
#> 10 10 1172470 8 144501
#> # ℹ 90 more rows
# get the best releases
get_top_releases()
#> # A tibble: 3 × 4
#> name start_of_month url_path item_ids
#> <chr> <dttm> <chr> <list>
#> 1 Top Releases of October 2024 2024-10-01 07:00:00 top_october_2024 <int>
#> 2 Top Releases of September 2024 2024-09-01 07:00:00 top_september_2024 <int>
#> 3 Top Releases of August 2024 2024-08-01 07:00:00 top_august_2024 <int>